Using concentrated starformation to study environmental quenching in EAGLE simulation

ASTRU JD

Presented by Di Wang

Supervisor:

Scott Croom Julia Bryant Also coached by Claudia Lagos

ASTRO 3D

EAGLE (Evolution and Assembly of GaLaxies and their Environments) simulation suite

It consists of a collection of cosmological hydrodynamical simulations on galaxy evolution with different resolutions, cosmological volumes and subgrid models.

'Friends-of-Friends' (FoF) algorithm define halos; SUBFIND algorithm define subhaloes within the FoF halo; contain particles with the lowest value of the gravitational potential are classified as the centrals, while the rest are classified as satellites.

Cluster-EAGLE

The galaxy cluster zoom hydrodynamical simulations

- •Spatial distribution of SF in the EAGLE galaxies comparing with SAMI observations (C-index)
- •What will effect the C-index? (How long has the galaxies been a satellite, radii)
- •With EAGLE, how the sSFR, Cindex change with lookbacktime?
- •Further more, how does SF quenching act at different redshift?

ASTRU JD Distribution of SF in the galaxies:

• Concentration index (Cindex):

SAMI: $log10(r50, H\alpha/r50, cont)$, which compares the extent of ongoing star formation to previous star formation. (Schaefer 2017, 2019)

EAGLE/C-EAGLE: log10(r50,SFR/ r50,rband) from gas/stellar particles. (only include particles within 1.4r_e in the disc, 0.5r_e in height considering the aperture affect in SAMI). At z=0.

regular galaxy : C-index \ge -0.2 SF-concentrated galaxy: C-index < -0.2

ASTRO 3D

Normalized Histogram of C-index

Fraction of SF-concentrated galaxy with binary distribution regular galaxy : C-index 2

regular galaxy : C-index ≥ -0.2 SF-concentrated galaxy: C-index < -0.2

Fraction	LMG	IMG	HMG	C-EAGLE
SAMI	10±3%	14±4%	29±4%	29±4%
EAGLE	21±2%	27±1%	40±2%	51±3%

With SAMI survey, we see galaxies in denser regions tend to have lower C-index, the fraction of SF-concentrated galaxies is increasing with greater halo masses. (Wang2022)

Sum1:

We can use C-index in EAGLE simulation for selecting galaxies that are currently undergoing "outside- in "quenching process.

We see a similar trend with EAGLE galaxies compared with SAMI observations at z=0.

ASTKO JU

What will effect the C-index in different halo masses?

- T_sat: the lookback-time when satellites falled into the current host halo
- Radii: satellite current radii normalised by r200
- N_pricentre: how many times the galaxy passes through the group centre

Sum2:

C-index is a better calibration of how long the satellite has fallen into the current host than the radius

Orbit is important during the environmental quenching process as greater N_pricentre have more concentrated star-formation

ASTRU JD SSFR, C-index time Profile

- T_lastcentral: the lookback-time when when the galaxy was a central; delta T_lastcentral = 0, means galaxies just been noticed as satellites
- sSFR, C-index at 20 snapshot from z=0 to 20.
- sSFR-MS bin: ≥-0.2, -0.2 to -0.5, <-0.5 (top to bottom)
- R_closetapproach: the closest radii that satellites approach the host centre
- First_infall: N-pricentre = 0

Sum3:

EAGLE supports sSFR take shorter times to drop off the MS in HMGs; denser environments are more efficient in stripping gas in the discs;

R-closest_approach and ratio of first-infallers are corresponding to the row difference

ASTRU JU

SF quenching at different redshift

- T_lastcentral: the lookback-time when when the galaxy was a central; delta T_lastcentral = 0, means galaxies just been noticed as satellites
- delta sSFR: sSFR_lastcentral sSFR_refshift
- delta C-index: C-index_lastcentral C-index_redshift

Sum4:

At z=0, a positive correlation between delta sSFR and delta C-index, longer delta t_lastcentral cause greater differences At higher redshift, the delta sSFR is large without delta C-index change, might be caused by at high redshift, galaxies are more tend to be clumpy and disturbed (Elmegreen2005,Nelson2013)

AOIKU JU

SF quenching at different redshift

• T_dep: assuming that ISM inflow, outflow, and SFRs remain constant, how long does it take to deplete gas in a galaxy completely

(a)net growing or maintaining their ISM reservoir, $t \text{ dep } \ge 10 \text{Gyr}$; (b)slowly depleting their ISM reservoir, 1.5 Gyr < t dep < 10 Gyr; (c)rapidly depleting their ISM reservoir, $t \text{ dep } \le 1.5 \text{ Gyr}$;

$$t_{\rm dep} = \Delta t = \frac{M_{\rm ISM,t}}{M_{\rm in,t} - M_{\rm out,t} - M_{\star,t}}$$

Sum5:

We find that satellites at z = 1 display

very short depletion timescales < 1 Gyr; too short to imprint a clear signal of outside-in quenching in the form of C-index variations.

At $z \leq 0.5$, however, the population of galaxies undergoing delayed-thenrapid quenching (i.e. those with depletion times ≥ 5 Gyr) become very common, allowing the C-index to trace the way outside-in quenching happens

Conclusion:

- We can use C-index in EAGLE simulation for selecting galaxies that are currently undergoing quenching process. We see similar trend with EAGLE galaxies comparing with SAMI observations at z=0. It's likely that ram-pressure strips gas in the discs, which will lead to lower C-index.
- C-index is a better calibration of how long the satellite has fallen into the current host than the radius. Orbit is important during the environmental quenching process as galaxies with greater N_pricentre have more concentrated star-formation
- EAGLE supports sSFR take shorter times to drop off the MS in HMGs; denser environments are more efficient in stripping gas in the discs;
- At z=0, a positive correlation between delta sSFR and delta C-index, longer delta t_lastcentral cause greater differences. SF quenching acts differently at different redshift

ASTRO 3D

Bagpipes:

2.4. Double power law

The double-power-law (DPL) function introduces another free parameter in order to separate the rising and declining phases of the SFH, which are modelled by two separate power-law slopes. This function has been shown to provide a good description of the redshift evolution of the cosmic SFRD (Behroozi et al. 2013; Gladders et al. 2013), as well as producing good fits to SFHs from simulations (e.g. Pacifici et al. 2016; Diemer et al. 2017; Carnall et al. 2018). The functional form is

SFR(t)
$$\propto \left[\left(\frac{t}{\tau} \right)^{\alpha} + \left(\frac{t}{\tau} \right)^{-\beta} \right]^{-1}$$
 (4)

where α is the falling slope, β is the rising slope and τ is related to (but not the same as) the peak time. The priors reported in Table 1 are based on those used by Carnall et al. (2018).

Di Wang, USYD, di.wang@sydney.edu.au

