The Hector Clusters: Overview. Matt Owers

MACQUARIE University

Why clusters again?

- Interesting results from SAMI:
 - Barsanti+21a, 21b see evidence for changes in disk colour with R/R200, but low numbers and smaller radius in SAMI.
 - Around 50% of S0 population have bulges that are younger than disks, but no strong correlation with environment.

Why clusters again?

- Interesting results from SAMI:
 - Ram-pressure stripped galaxies (Owers+2019)

Stripped at ~ pericentric passage. What happens after this?

Why clusters again?

• Interesting results from SAMI:

Slow rotators in groups (Fogarty+15, Brough+17)

Why clusters again? Outskirts are key to many issues!

- Key questions related to galaxy evolution in clusters:
 - (i) Do recent infallers become fully quenched following first passage of cluster core?
 - (ii) Which cluster properties are important for galaxy transformation, e.g., mass, dynamical state etc?
 - (iii)What is the relative importance of pre-processing in groups?

(iv) Do we see slow-rotators in groups prior to infall?

(v) ...and many more

- 1-2R₂₀₀ region is key to understanding infalling and backsplash populations.
- Need to characterise local environment: isolated, pairs, groups.

TheThreeHundred project: Arthur et al. (2017)

Which clusters?

- 11 clusters selected from OmegaWINGS survey (Moretti+2017), incl. 3 SAMI clusters with M₂₀₀ > 5x10¹⁴M_☉.
- Selection criteria: σ>650km/s, dec < 5deg, 0.04 < z < 0.06 and coverage with DES (grizY) and DeCaLs (grz).

Table 4:	HECTOR	clusters:	Nine selected fre	om Omega	WINGS	with decl.	$< 5 \ deg$, 0.04 <	< z < 0	0.0
and σ_{200} :	> 650 km/s,	plus the	three most mass	ive SAM	clusters.					

Cluster	R.A.	decl.	Z	σ_{200}	N_{spec}	$N_{spec} R < 2R_{200}$
					$R < 2R_{200}$	and $ v_{\rm pec} /\sigma_{200} < 3.5$
A0151	17.1092	-15.4092	0.05327	771	1573	380
A3158	55.7704	-53.6531	0.05947	948	1496	608
A3266	67.7746	-61.4436	0.05915	1095	1881	1079
A3376	90.1529	-40.0326	0.04652	756	960	391
A3391	96.5859	-53.6933	0.0514	1157	793	345
A3395	96.88	-54.4374	0.05103	1272	1696	631
A3667	303.0917	-56.8152	0.05528	1031	1901	913
A3716	312.86	-52.707	0.04599	753	1402	649
A2399	329.372605	-7.79692	0.058	690	1061	382
A0119	14.06715	-1.25537	0.0442	840	1975	609
A0085	10.460211	-9.303184	0.0549	1002	1862	637

MW Plane

MW Center

What's been done so far? Photometry

- Baseline photometry for redshift survey comes from DECaLs catalogues.
- Have retrieved DES grizY & SDSS ugriz images where available.
- Produced cutouts with matched astrometry, size and pixel scale.
- Used ProFound with rizY detection (r+z if no I, Y) to produce aperturematched photometry.
- Produced i-band proxy using r & z photometry for all galaxies, as well as stellar mass proxy using g-i_{fake} colour, i_{fake} and redshift.

What's been done so far? Redshifts

- Collated z's from other surveys & cross-matched with photo cats (SDSS, OmegaWINGS, WINGS, 2dFGRS, 6dFGS etc)
- Survey with 2dF/AAOmega, targeting gals without z's in the r< 3R₂₀₀ regions to r=19.5mag.
- Reduced using SAMI-CRS pipeline, redshifts from autoz.
- Have ~31,000 redshifts within $3R_{200}$ of which 8700 have $|v_{pec}| < 3.5\sigma$.

Spectroscopic Completeness to r mag = 18.5

What's been done so far? Cluster membership

- Started writing code for caustics membership and substructure.
- Some complicated clusters – needs detailed substructure analysis to tease out membership.

What's been done so far? Substructure analysis

- New method to perform mixture modelling based on Tucker+(2020) approach.
- Uses NFW profile for spatial distribution of galaxies.
- Models projected velocity AFO radius by assuming spherical NFW profile.
- Incorporates odd selection function and spectroscopic completeness.
- Fits for M200, position, scale radius for main cluster and substructures, fraction of galaxies belonging to substructures.
- Uses results to assign probabilistic membership to subclusters.

What needs to be done? Clusters

- Fix ProFound segments
- Add in Galex/VISTA VHS/WISE data
- Complete redshift survey
- Bulge/disk/Sersic fits
- Detailed analysis of cluster dynamical states using Hector-CRS+X-ray data
- Decide on target selection (fraction of red-sequence, blue cloud, plus definition of RS & BC)
- CATID generation.

What needs to be done? WAVES regions

- Environments in the WAVES regions:
 - Analyse 2PIGG–detected groups and clusters, consistent mass measurements between cluster and WAVES regions
 - Local density and other environment proxies
 - Filaments with DISPERSE?
 - eROSITA data?