

RADIAL GRADIENTS IN LOW-SPIN GALAXIES

Peter Watson

SAMI/Hector Busy Week

DXFORD LINE INDICES

- Blue/red sidebands set the pseudo-continuum level
- Use variance weighting (Cenarro+01) to avoid bad pixels skewing results
- 20 indices available in SAMI blue arm
- Not all indices are created equal!
- Require **at least** one Balmer line, one Mg index, and one Fe index
- Stellar populations are determined through χ^2 minimisation (Proctor+04)
- SSP models of Thomas, Maraston & Johannson (TMJ+11)
- Uncertainties measured directly from $\chi^2 \ contours$

OXFORD STELLAR POPULATIONS

HINTZE CENTRE FOR ASTROPHYSICAL SURVEYS ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

OXFORD KINEMATIC CLASSIFICATION

- Known correlation between [$\alpha/Fe]$ and σ
- Looking for second-order correlations:
 - Environment
 - Mass
 - Morphology
- Kinematic morphology uses spin proxy (λ_R) and ellipticity to classify galaxies
- Fast rotators (FRs) have ordered rotation, often disk-dominated
- Slow rotators are dispersion-dominated, with complex velocity fields
- Classification needs to account for inclination

OXFORD INTEGRATED POPULATIONS

- Residual correlation between [α /Fe] and λ_R
- Uncertainty over interpretation correlation vs causation
- Slow rotators and low- λ_R fast rotators show little difference in α -enhancement
- Utilise spatial data from SAMI
- Also investigate age, [Z/H]

RADIAL GRADIENTS

- Multiple methods of measuring radial trends
- Measure of radius half-light or dynamical?
- Elemental abundance requires higher S/N than kinematics
- Compromise between spatial resolution and spectral S/N
- Binning scheme has a significant impact on results
- Stacking spectra from different galaxies
 - Substantial increase in S/N for each bin
 - Smooths over underlying variation in sample

OXFORD BINNING SCHEME

Voronoi bins:

- Set a target S/N=25
- Long tail from high S/N galaxies

Radial bins:

- Target 4 radial annuli
- Log-scaling to match gradients
- Significant scatter in resulting S/N
- Similar proportion of binned spectra fail to meet target S/N
- Absolute number of spectra significantly higher using Voronoi method
- Number of bins unevenly distributed amongst galaxies

OXFORD BINNING SCHEME

Voronoi bins:

- Set a target S/N=25
- Long tail from high S/N galaxies

Radial bins:

- Target 4 radial annuli
- Log-scaling to match gradients
- Significant scatter in resulting S/N
- Similar proportion of binned spectra fail to meet target S/N
- Absolute number of spectra significantly higher using Voronoi method
- Number of bins unevenly distributed amongst galaxies

OXFORD RECOVERING GRADIENTS

- Seeing has a huge impact on the measured gradient
- Failing to account for this can significantly bias results
- Use forward modelling approach (Ferreras+19)
- Model a simple gradient as
 - $X = m \log_{10}(r/r_e) + c$ (a)
- Convolve the model with a Moffat profile of the seeing (b)
- Remap the convolved model (c) on to the binning scheme (d)
- Calculate residuals -> can determine most probable solution through χ^2 minimisation or maximising log-likelihood
- Calculating uncertainties requires MC methods

, RECOVERING GRADIENTS

HINTZE CENTRE FOR ASTROPHYSICAL SURVEYS ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

OXFORD RECOVERING GRADIENTS

 \mathbf{O}

- Most galaxies show correlations between gradient and intercept
- More bins (i.e. data points) reduce this correlation
- Low uncertainties require both:
 - Fine spatial sampling in centre (smaller bins than ePSF)
 - Coverage extending out to large radii
- Voronoi scheme excels at spatial sampling, but roundness criterion reduces coverage on outskirts of galaxy
- Reverse is true for radial scheme good coverage to edge of cube, but can undersample ePSF

OXFORD RECOVERING GRADIENTS

- Some obvious quality cuts are applied reliable gradients clearly cannot be determined from only two data points
- Only 38% of galaxies are sampled out to 1Re using Voronoi binning
- This compares to 83% using the radial scheme
- Considering radial sampling, number of reliable Voronoi gradients reduces even further
- Results from methods are consistent, despite sampling differences

UNIVERSITY OF

OXFORD GRADIENT INTERCEPTS

UNIVERSITY OF

GRADIENT INTERCEPTS

UNIVERSITY OF

OXFORD GRADIENT INTERCEPTS

OXFORD GRADIENTS

OXFORD GRADIENTS

OXFORD GRADIENTS

OXFORD CONFOUNDING FACTORS

- Not all galaxies are well-behaved
 - Embedded disks
 - Kinematically-decoupled cores (KDCs)
 - Counter-rotating cores (CRCs)
- Contamination of slow rotators still an issue
- Fraction of SAMI galaxies conclusively identified as hosting KDC/CRCs much lower than local IFS surveys
- Embedded disks:
 - Foster+18: 3/384 (SAMI)
 - Arnold+14: 6/22 (SLUGGS)
- 2σ:
 - Davor+11: 11/260 (ATLAS3D)
 - 4/116 slow rotators

1.0

0.8

0.6

0.4

0.2

OIII

NII

FUTURE DIRECTION

- Larger sample to improve statistical significance:
 - Hector/MaNGA
- Robust detection/classification of KDC/CRCs:
 - Account for seeing limitation
 - Utilise ionised gas kinematics & flux