Spinning of galaxies in filaments

Stefania Barsanti ASTRO 3D postdoc / ANU

stefania.barsanti@anu.edu.au

SAMI+Hector Busy Week 2022

Motivation How do galaxies build up their spin in the cosmic web?

A. Khalatyan/J. Fohlmeister/AIP

Dark Matter Halos in the Cosmic Web

Alignment of the dark matter halo with respect to the filament is **mass-dependent**

High-mass halos _____

Low-mass halos

alignement

(Codis et al. 2012)

alignement

Dark Matter Halos in the Cosmic Web

Alignment of the dark matter halo with respect to the filament is **redshift-dependent**

(Codis et al. 2012)

Adding Baryonic Matter

Similar mass-dependency for galaxies - with conflicting results in the literature

(Dubuois et al. 2014, Welker et al. 2014)

Observations

Galaxy spin-filament alignments trends as a function of morphology and stellar mass

Photometry: Tempel et al. 2013a,b

Memory of galaxy formation: weak signal - especially in the nearby Universe

IFU - MaNGA: Krolewski et al. 2019, Kraljic et al. 2021

IFU - SAMI: Welker et al. 2020

First detection of the alignment of galaxy spins with filaments at $\approx 2\sigma$.

Observations

No trends as a function of stellar mass and contradicting results for SO galaxies.

Barsanti, Colless, Welker et al. (2022)

What is the **primary galaxy parameter** of correlation with spin-filament alignments?

What can we tell about separate spin-filament alignments for **bulges and discs**?

Insights on the formation of galaxies, bulges and discs

Spectroscopic and photometric survey of ~300 000 galaxies at z<0.5

The GAMA survey

(Driver et al. 2011, 2022)

Discrete Persistent Structure Extractor

Automatic identification of persistent structures for cosmological and hopefully more useful applications.

- Sousbie (2011) a,b
- 3D topological features: no assumptions on the distribution
- Tessellation of space in **voids, walls and filaments**

http://www2.iap.fr/users/sousbie/web/html/indexd41d.html?

DisPerSE

• **Persistence** (i.e. significant) threshold: keep the most robust features against S/N

Delaunay Tessellation Field Estimator

GAMA G09, G12 and G15 regions

RA, Dec, Z of ~36 000 GAMA galaxies at z<0.1

Cosmic filaments

GAMA G09, G12 and G15 regions

2 mla

3D models on Sketchfab!

We exploit **spatially-resolved s**

alaxy spin axes.

2D bulge/disc decompositions

Bulge/disc **photometric**

decomposition

(Casura et al. 2022, Barsanti et al. 2021)

2D bulge/disc decompositions

Bulge/disc **kinematic** decomposition

(Oh, Colless, Barsanti et al. 2020)

Galaxy spin-filament angle

We assign each SAMI galaxy to the closest cosmic filament

|**cos(γ)**| =1 → || alignement

Results

~70% variance explained by Bulge Mass

B/T No correlation residuals left for the other M_{*} parameters Age $(V/\sigma)_e$ or λ_e D_{fil} $\Delta(PA)$ Σ₅

Accounting for the correlation with Bulge Mass

Results

 $|\cos \gamma|$ *ρ*: -0.034 p-value: 0.324 *ρ*: 0.033 p-value: 0.342 *ρ*: 0.003 p-value: 0.94 *ρ*: -0.002 p-value: 0.952 *ρ*: 0.033 p-value: 0.337 *ρ*: 0.02 p-value: 0.558 *ρ*: -0.05 p-value: 0.143

Fix M_{bulge}

- 0.03 - 0.02 - 0.01 - 0.00 - -0.04

-0.05

Bulge Mass is the primary parameter

Galaxies with high bulge mass Galaxies with low bulge mass —

Bulge/disc spin-filament alignments

Bulge

Disc

ASTROD Media Release Today!

Spin flips show how galaxies grow from the cosmic web

5 October, 2022

ARC Centre of Excellence for All Sky Astrophysics in Three Dimensions (ASTRO-3D)

The alignment between galaxy spins and the large-scale structure of the universe reveals the processes by which different components of galaxies form.

Work in progress

What is the role of **black hole activity** in galaxy spin-filament alignment?

instantaneous

integrated: RFclassifier

Higher density regions: galaxy spins expected to have more

Clusters: random orientation as they are regions where the flow of multiple filaments intersect.

Malavasi et al. 2021: no significant trend as a function of the local environment

HECTOR Galaxy Survey

What is the role of the local **environment**?

perpendicular tendencies due to higher fraction of mergers (e.g., Welker et al. 2014)

What is the role of the local **environment**?

Cluster outskirts

Outer regions of many galaxies

Low-mass galaxies

Larger galaxy sample

Multivariate analysis of filaments Different galaxy populations

Mergers and disturbances

Mass-dependency

Significance of the signal

