Using Streams and Shells to Trace the Dynamical Evolution of Massive Galaxies

Presented by: Tom Rutherford Supervisors: Scott Croom, Jesse van de Sande

Galaxy Mergers as a Formation Pathway of Slow Rotators

- Slow rotators are galaxies characterised by low spin parameter λ_{R_e} , large stellar mass and old stellar age.
- Unclear which processes cause the morphological (spindown) and quenching transformation of galaxies into slow rotators.
- Simulations suggest galaxy mergers are capable of kinematically transforming galaxies.
- If slow rotators are formed through a series of galaxy mergers, we expect to see a higher fraction of recent merger features around them.
- SAMI's kinematic data and Hyper-Suprime Cam's (HSC) imaging allows us to compare populations of slow rotators and galaxies with tidal features respectively.

Target Selection

- Sample is taken as non-cluster SAMI ETGs, with a stellar mass cut of $M>10^{11}M_{\odot}$.
 - Fraction of slow rotators increases significantly above $10^{11}M_{\odot}$, our work wants to investigate rates of photometric features in a population with a large proportion of slow rotators.
 - Completeness of SAMI kinematics and HSC imaging is very high above $10^{11} M_{\odot}$.

Model-Subtracted Residual Images

- Identifying low surface brightness tidal features is difficult.
- We use the technique of model subtraction.
- Create a 2D flux ProFit model.
- 2D Bayesian galaxy profile modelling¹.
- 3 Sérsic components, all parameters allowed to vary.

MGE Modelling

- Multi-Gaussian Expansion (MGE)¹ modelling also done.
- High efficiency algorithm fits only sectors of a galaxy.
- Convolves analytically with Gaussian PSF.
- ~20 times faster than ProFit.
- Helpful in confirming LSB features at large radii.

Model Subtraction

- MGE and ProFit model of HSC imaging.
- Subtract the model.
- Identify tidal features as remnants after subtraction.
- ProFit centering is better, and as such is the primary residual used for visual inspection.

Visual Inspection

- Visual inspection completed individually by three people, "strength" of feature decided too.
- Features determined to exist if >1 person identified them.
- Strength taken as average.

Slow Rotators?

- We are left with a population of "feature galaxies" and "regular galaxies".
- If slow rotators are formed by mergers and we can detect their remnants, our feature galaxies should be correlated with the slow rotator population.

[van de Sande et al. 2022]

Slow Rotators?

- We find no correlation between our feature galaxies and the slow rotator population.
- No significant difference in the proportion of feature or regular galaxies defined as slow rotators.
 - $53.33^{+8.62}_{-7.53}$ % vs $51.16^{+5.31}_{-5.36}$ %

Do mergers spin down galaxies?

- We find no difference in the λ_{R_e} or ε distributions between feature and non feature galaxies.
- There does not appear to be any correlation between identifiable tidal features and λ_{R_e} or ε .

Age, sSFR and Σ_5

• Of the parameters tested, only age, sSFR and Σ_5 showed significant differences between the feature and regular sample.

Comparison with Other Studies

- The MATLAS survey consists of 177 ETGs with deep imaging from the ATLAS^{3D} survey.¹
- A visual analysis to determine tidal features was performed.

[Valenzuela & Remus 2022]

Difference in Highest Mass Galaxies?

- MATLAS finds a correlation between spin down and tidal features.
- They go to a lower stellar mass, however.

Continuing work...

- We are currently analysing ~350 noncluster ETG SAMI galaxies down to 10¹⁰ M_☉.
- ProFit models take too long to create for a large sample, so high contrast images are used instead in inspection images.
- Image convolving/stacking technique also used.

Conclusions

- Our analysis finds no correlation between slow rotators and tidal features.
- Strong tidal features are correlated with a lower age, higher sSFR and shells are correlated with low density environments.
 - Wet mergers leave features for longer timescales^{1,2}, can recreate spinning disc^{3,4}, and induce star formation.
- MATLAS found a spin correlation, but only significant when including galaxies below $10^{11}M_{\odot}$.
- Further analysis of ~350 SAMI galaxies between $10^{10}M_{\odot}$ and $10^{11}M_{\odot}$ ongoing...

[1 Hood et al. 2018] [3 Naab et al. 2014] [2 Lotz set al. 2010b] [4 Lagos et al. 2018]